Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
نویسندگان
چکیده
Compact but non-native intermediates have been implicated in the hierarchical folding of several large RNAs, but there is little information on their structure. In this article, ribonuclease and hydroxyl radical cleavage protection assays showed that base pairing of core helices stabilize a compact state of a small group I ribozyme from Azoarcus pre-tRNA(ile). Base pairing of the ribozyme core requires 10-fold less Mg(2+) than stable tertiary interactions, indicating that assembly of helices in the catalytic core represents a distinct phase that precedes the formation of native tertiary structure. Tertiary folding occurs in <100 ms at 37 degrees C. Such rapid folding is unprecedented among group I ribozymes and illustrates the association between structural complexity and folding time. A 3D model of the Azoarcus ribozyme was constructed by identifying homologous sequence motifs in rRNA. The model reveals distinct structural features, such as a large interface between the P4-P6 and P3-P9 domains, that may explain the unusual stability of the Azoarcus ribozyme and the cooperativity of folding.
منابع مشابه
Compaction of a bacterial group I ribozyme coincides with the assembly of core helices.
Counterions are critical to the self-assembly of RNA tertiary structure because they neutralize the large electrostatic forces which oppose the folding process. Changes in the size and shape of the Azoarcus group I ribozyme as a function of Mg(2+) and Na(+) concentration were followed by small angle neutron scattering. In low salt buffer, the RNA was expanded, with an average radius of gyration...
متن کاملAssembly of an exceptionally stable RNA tertiary interface in a group I ribozyme.
Group I intron RNAs contain a core of highly conserved helices flanked by peripheral domains that stabilize the core structure. In the Tetrahymena group I ribozyme, the P4, P5, and P6 helices of the core pack tightly against a three-helix subdomain called P5abc. Chemical footprinting and the crystal structure of the Tetrahymena intron P4-P6 domain revealed that tertiary interactions between the...
متن کاملFast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
Formation of the P3-P7 pseudoknot structure, the core of group I ribozymes, requires long-range base pairing. Study of the Tetrahymena ribozyme appreciates the hierarchical folding of the large, multidomain RNA, in which the P3-P7 core folds significantly slower than do the other domains. Here we explored the formation of the P3-P7 pseudoknot of the Candida ribozyme that has been reported to co...
متن کاملA peripheral element assembles the compact core structure essential for group I intron self-splicing
The presence of non-conserved peripheral elements in all naturally occurring group I introns underline their importance in ensuring the natural intron function. Recently, we reported that some peripheral elements are conserved in group I introns of IE subgroup. Using self-splicing activity as a readout, our initial screening revealed that one such conserved peripheral elements, P2.1, is mainly ...
متن کاملRNA Structural Modules Control the Rate and Pathway of RNA Folding and Assembly.
Structured RNAs fold through multiple pathways, but we have little understanding of the molecular features that dictate folding pathways and determine rates along a given pathway. Here, we asked whether folding of a complex RNA can be understood from its structural modules. In a two-piece version of the Tetrahymena group I ribozyme, the separated P5abc subdomain folds to local native secondary ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 4 شماره
صفحات -
تاریخ انتشار 2003